The power grid continues to increase in complexity, in good part by the growing use of distributed energy resources, for example, wind and solar power. Compounding this complexity are the vastly increased dynamics that these renewables introduce as well as greater uncertainty surrounding supply and demand results when computationally modeling the integration of wind and solar power.
This project is helping to solve these challenges by developing and deploying new algorithms and solutions for grid optimization, uncertainty, and dynamics. Key to this effort is an advanced framework that allows 10 times faster prototyping of computationally intense analyses as well as open source solutions that compute 100 times faster by harnessing parallelism. The team is also identifying use cases where they can demonstrate the framework and solutions at scale.
The algorithms and solutions will be key to supporting efforts by utilities to assess renewable variability effects in operations and planning. They will also be important to helping the Department of Energy understand the effects of renewable energy variability on reliability in the power grid.
Highlighted Resources
Related Projects
-
Control Theory
Achieving the goals of the Grid Modernization Multi-Year Program Plan requires significant advanc
-
Midwest Interconnection Seams Study
The central United States is home to some of the world’s most bountiful energy resources.
-
Extreme Event Modeling
Catastrophic situations, such Superstorm Sandy, Hurricane Katrina, and the 2003 Northeast blackou
-
Development of Integrated Transmission, Distribution, and Communication Models
To meet the President's goal of 80% clean energy by 2035, significant amounts of variable, and in
-
Development and Deployment of Multi-Scale Production Cost Models
The complexity and resolution required to model the modern power system is rapidly increasing. T
Related News
-
New Flexible Model Framework for Super-Speedy Grid Optimization Analysis
January 1, 2017