

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1)

DAVID NARANG, NREL

April 18-20 Sheraton Pentagon City – Arlington, VA

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) **High Level Summary**

Project Description

- Accelerate the development and validation of interconnection and interoperability standards
- Ensure cross-technology compatibility & harmonization of requirements

Value Proposition

- Improve coordination of advanced generation and storage assets
- **Enable expansion** of markets for key devices
- Eliminate barriers that may be addressed by improved standards

Project Objectives

- Interconnection and interoperability gap analysis & prioritization of high impact areas
- Standards coordination and harmonization for key grid services and devices
- Develop new testing procedures

Insert Technical Team Area

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Project Team

Project Team and Roles

NREL - Overall Lead, Inverters/PV

ANL - Automotive applications

LBNL - Responsive loads

SNL - Inverters/Energy storage

ORNL - Microgrids

PNNL - T&D automation, responsive loads

PROJECT FUNDING								
Lab	FY16 \$	FY17\$	FY18 \$					
NREL	\$240,000	\$240,000	\$240,000					
PNNL	\$240,000	\$240,000	\$240,000					
LBNL	\$240,000	\$240,000	\$240,000					
SNL	\$160,000	\$160,000	\$160,000					
ANL	\$160,000	\$160,000	\$160,000					
ORNL	\$80,000	\$80,000	\$80,000					
INL	\$80,000	\$80,000	\$80,000					
Total	\$1,200,000	\$1,200,000	\$1,200,000					

Industry Observers/Advisors/Partners

Bulk Electric System Operators

NY ISO | PJM

Utilities / Trade Groups

Duke Energy | TVA | Southern Co.
Oncor | Entergy | NRECA

Standards Development

IEEE | ASHRAE | SunSpec

SGIP | NIST

Trade Groups

EPRI | NRECA

Vendors & Manufacturers

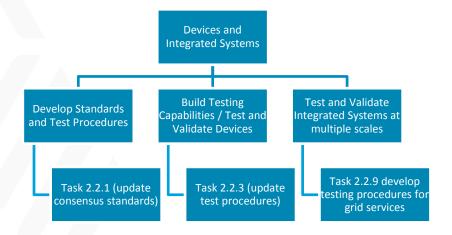
Intel | Sunpower | Fronius

Enphase

Consulting/Academic

Enernex | MIT Lincoln Labs

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Relationship to Grid Modernization MYPP



This project directly aligns with MYPP Activities

- Activity 2: Develop Standards & Test Procedures
- Activity 3: Build Testing Capabilities / Test and Validate Devices

Also aligns with:

- Activity 4: Test and Validate Integrated Systems at multiple scales
- ➤ Task 2.2.1: Update consensus interconnection standards
- ► Task 2.2.3: Update testing procedures for interconnection standards
- ► Task 2.2.9: Develop testing procedures for evaluating the ability of devices to provide grid services

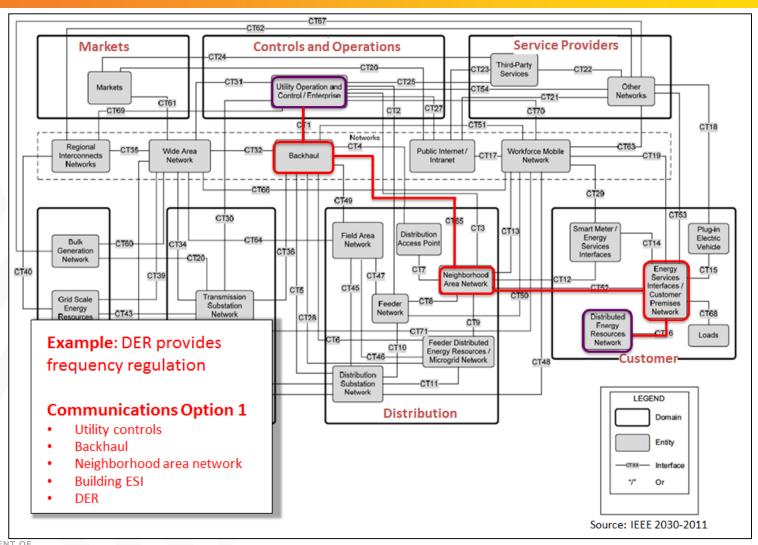
Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Approach

Task	Description	Key Issues
1.1	Conduct preliminary gap analysis	• Identification of relevant standards
1.2	Develop prioritization framework	 Focus on grid services (developed by GMLC 1.4.2) Identify prioritization areas & score (market size, time to fill gap, locational urgency + resource relevance, technical difficulty
1.3	Initial standards coordination	• Identify specific standards to address

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Key Project Milestones

Milestone (FY16-FY18)	Status	Due Date
Preliminary gap analysis	Complete	9/30/16
Gap prioritization framework	Complete	2/28/18
Gap analysis recommendations	Complete	3/31/17
Year 1 Annual SMART Milestone Standards & codes forum	Delayed	4/1/17
Year 1 Annual SMART Milestone Annual report	In progress	4/1/17
Develop test procedures	Upcoming	Q2 2017
Validate test procedures	Upcoming	Q3 2017
Standards coordination	In progress	3/31/17 + throughout

GWAC Stack


Connecting Communications to Interoperability

Example of communicating grid service need from utility operations to customersited DER

GWAC Stack Layer	Inverter-Based Systems (Generation and Storage)	Venicles		Microgrids		
6-8	 Grid service enabled as a busine Entity provides signal requesting DER/Building/Microgrid are able Device controls are defined for 	ignal requesting grid service icrogrid are able to respond to request for grid service are defined for providing grid service				
<u>5</u> 4	 Data modeling relevant for prov SunSpec Alliance PV Models SunSpec/MESA Device Models OpenFMB 	Vehicle data models	• OpenADR 2.0	► IEEE P2030.7 ► IEEE P2030.8		
3	 IEEE 2030.5 (SEP 2.0) IEC 61850-90-7 IEC 61850-7-420 DNP3 IEEE 2030.2 IEEE 1547.3 Modbus 	SAE J2847/3 (supports SEP2.0) SAE J2847/2	ASHRAE 201 (FSGIM)	Modbus TCP/IP DNP3 Need Harmonization		
2	 ZigBee DNP3	TCP/IP UDP FTP HTTP	• DALI	TCP/IP DNP3 Canbus		
1	 CTA-2045 IEEE 802.3 (Ethernet) IEEE 802.11 (Wi-Fi) IEEE 802.15.4 (Thread) 	Twisted Pair CTA-2045 IEEE 802.3 (Ethernet) IEEE 802.11 (Wi-Fi) SAE J1772 (PLC) SAE J2931/4 (PLC)	 IEEE 802.11 (Wi-Fi) IEEE 802.15.4 (Thread) 	Twisted Pair, RJ-45, CTA-2045 IEEE 802.3 (Ethernet) IEEE 802.11 (Wi-Fi) IEEE 802.15.4 (Thread)		
0	• IEEE P1547.1	SAE J3072 (enables conformance to IEEE 1547.1) SAE J2894-1 (PQ)	 N/A except for generation that needs to follow IEEE 1547 	• IEEE 1547.4		

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Accomplishments to Date – Gap Prioritization Summary

	Inverter-Based Systems (Electric Energy Storage, PV Systems)			Electric Vehicles			Responsive Loads & Generation					
Grid Services	ENERGY	REG, RESERVE, RAMP	VOLTAGE MGMT	ARTIFICIAL INERTIA	ENERGY	REG, RESERVE, RAMP	VOLTAGE MGMT	ARTIFICIAL INERTIA	ENERGY	REG, RESERVE, RAMP	VOLTAGE MGMT	ARTIFICIAL INERTIA
Market size	0.72	0.72	1.00	0.20	0.40	0.32	0.20	0.00	0.76	0.76	0.76	0.28
Time to fill gap	0.83	0.83	0.83	0.17	0.50	0.33	0.20	0.03	0.23	0.17	0.17	0.17
Locational urgency & resource relevance	0.50	0.50	0.50	0.50	0.40	0.40	0.25	0.00	0.75	0.75	0.75	0.5
Technical difficulty	0.80	0.80	0.80	0.80	0.40	0.32	0.24	0.40	0.80	0.40	0.40	0.12
Gap Priority Score	0.71	0.71	0.78	0.42	0.43	0.34	0.22	0.11	0.64	0.52	0.52	0.27

low opportunity high opportunit

Gap Prioritization Summary

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Next Steps and Future Plans - Recommendations

Recommendations

Inverter DER

- 1. Affirm updates in forthcoming revision of IEEE 1547
- 2. Update DNP3, IEEE 2030.5, IEC 61850, and SunSpec/MESA Modbus protocol maps

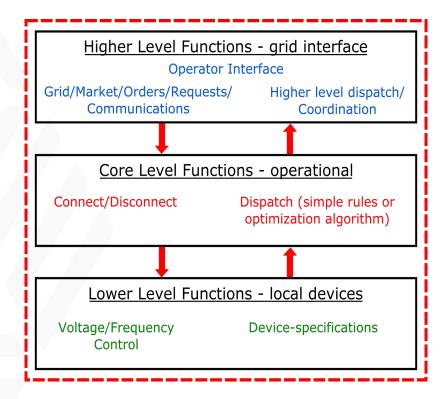
Responsive Loads

- Update OpenADR and ASHRAE standards
- Explore capability and requirements for IEEE 2030.5 (SEP2)
- 3. Continue work on transactive energy for building/controllable loads
- 4. Explore the requirements for standardizing the energy services interface

Electric vehicles

Update SAEJ3072

Additional Potential Gap Areas

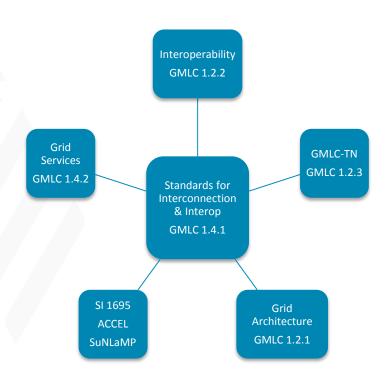

- 1. Responsive equipment characterization for grid services information model
- Cyber-physical security standard for grid-edge devices
- Grid-responsive building standard (standardization of CA Title 24)

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Accomplishments to Date

- Stakeholder Engagement
 - GMLC Workshop 9/2016 (Denver, CO)
 - SGIP 2016 Grid Summit 11/2016 (Washington, DC
 - GMLC workshop, 3/2017 (Atlanta, GA)
- Publications
 - Gap Analysis and Prioritization (3/2017)
- Lessons learned
 - Prioritization is important but not straight forward
 - Some key barriers are not technical
 - Some additional global gaps may need to be addressed in cases where no broad standards exist

Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Response to December 2016 Program Review

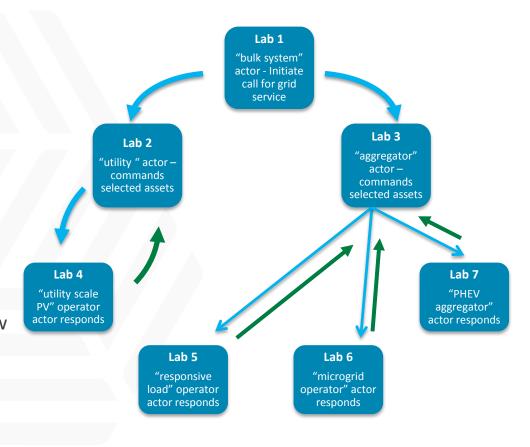
Recommendation	Response
Need a way to prioritize what to work on	The team has spend considerable time on developing a method to do this,. results are in.
Since IEEE 1547 is in the process of being updated, how do we engage with the IEEE process so they incorporate the cross-technology approach being used in this project?	IEEE 1547 is expected to enter balloting period in 2017, including a public comment period. This is a good opportunity to provide recommendations.
Please better define the industry observers/advisors/partners. Do not lump these all into one group. This project requires a lot of industry support.	Industry observers/advisors/partners have been better defined


Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Project Integration and Collaboration

- ► Close coordination with GMLC 1.2.2 Interoperability Topic 1.2.2 team __overall interoperability strategic vision
- ► GMLC 1.4.1 team __near-term standards and test procedures
- Scenarios will be coordinated across Grid Services, and interoperability projects
- ► Test procedures may be housed with GMLC 1.2.3
- Will coordinate with ACCEL team to ensure efforts complement each other and do not overlap

Communications:

- ► GMLC Workshop 9/2016 (Denver, CO)
- SGIP 2016 Grid Summit 11/2016 (Washington, DC)
- ► GMLC workshop, 3/2017 (Atlanta, GA)



Standards and Test Procedures for Interconnection and Interoperability (GMLC 1.4.1) Technical Details

Next Steps

- Review feedback from stakeholders
- Recommendations to SDOs.
- Decision on additional topic areas
- Identify focus for test procedures
- Development of demonstration to test end-to end execution of grid services by relevant grid edge devices
 - Utilizes DOE laboratory assets to show state of the art in standards and to identify gaps
 - Provides exercise of grid service concepts as well as devices

Concept of proposed demonstration of end-to-end grid service command and execution

