

Grid Modernization Initiative Peer Review

GMLC 1.4.2 – Definitions, Standards and Test Procedures for Grid Services from Devices

ROB PRATT

April 18-20, 2017 GMLC Peer Review Meeting Sheraton Pentagon City – Arlington, VA

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – High Level Summary

Project Description

Develop characterization test protocol and model-based performance metrics for devices' (DERs') ability to provide a broad range of grid services, i.e., to provide the flexibility required to operate a clean, reliable power grid at reasonable cost.

Value Proposition

- *Reward innovation,* help manufacturers understand opportunities, enlarge the market for devices
- Validated performance & value for grid operator decisions on purchases, programs, subsidies, rebates, markets, planning, operations
- ✓ Independently validated information for consumers & 3rd parties for purchase decisions

Project Objectives

- Simple, low-cost testing protocols manufacturers can use to characterize equipment performance (*Recommended Practice*)
- ✓ General, standard device model reflecting test results for each device class
- Proven means of estimating performance metrics for a standard set of grid services from the test results
- Protocol that can be regionalized to reflect local markets, new services, weather, loads, etc.

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – **Project Team**

Project Participants and Roles			Project Funding			
Laboratory	Device Class	Grid Services	FY16	FY17	FY18	Total
Pacific Northwest National Laboratory	1. Thermal storage	A. Peak load managementB. Artificial inertia/fastfrequency response	\$351K	\$440K	\$401K	\$1,191K
National Renewable Energy Laboratory	 Water heaters Refrigerators PV/inverters 	C. Distribution voltage management / PV impact mitigation	\$226K	\$481K	\$409K	\$1,116K
Sandia National Laboratory	6. Batteries/ inverters		\$106K	\$323K	\$274K	\$703K
Argonne National Laboratory	7. Electric vehicles (DR, V2G)	D. ISO capacity market (e.g., PJM's)	\$141K	\$288K	\$246K	\$675K
Oak Ridge National Laboratory	8. Res. & Com. HVAC 9. Com. refrigeration		\$146K	\$588K	\$481K	\$1,215K
Lawrence Berkeley National Laboratory	10.Commercial lighting	E. RegulationF. Spinning reserveG. Ramping	\$211K	\$263K	\$226K	\$700K
Idaho National Laboratory	11.Fuel cells 12.Electrolyzers		\$146K	\$313K	\$266K	\$725K
Lawrence Livermore National Laboratory		 H. Wholesale energy market/production cost 	\$94K	\$35K	\$48K	\$177K
Totals			\$1,420K	\$2,731K	\$2,350K	\$6,500K

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – Relationship to Grid Modernization MYPP

 Project is central to a number of tasks in the Devices and Integrated Systems MYPP: grid services, unified models, testing procedures and contributes to many more.

> Definition of grid services & representative drive cycles

Battery equivalent model defines flexibility, unifies DR & DER models

Device models & validation test results contribute to testing library

U.S. DEPARTMENT OF

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – Approach

Characterization Protocol

- Measure device fleet parameters describing ability to provide grid services
- Simple, short (<24-hr, inexpensive) procedure, complementing existing test protocols: *How much, how fast, how long, time lags, etc.*

Model Device Fleet

- ► Time series model of device fleet performance
- ► Based on measured parameters
- Base case end-use load that must be served
- User and device limitations and requirements
- Express as battery equivalent parameters to grid services model
- Measures of consumer and device impacts

Key Challenges: 1) General battery equivalent model for all devices/services, 2) Modular design & assumptions allow regionalization

Define Grid Service

- Definition and purpose
- Requirements of providing devices
- Representative time-series "drive-cycle" of the service

Grid Service Dispatch Model

- Scale fleet of identical devices to service based on nominal power of devices and peak power required by service
- Simple, direct control of batteryequivalent fleet of identical devices

Performance Metrics

- Grid service performance metrics
- Consumer impacts (energy, comfort, amenity)
- Device impacts (cycles/yr, etc.)

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – Key Project Milestones

M	ilestones* (FY16-FY18)	Status	Due Date
1. 2.	Standard definitions & drive cycles for grid services (draft for industry review) General device model (draft for industry review)	1. Complete	October 1, 2016
3.	Extrapolation procedure for performance of grid services	3. Complete	April 1, 2017
4.	Draft Recommended Practice (vetted with industry)	4. Underway	October 1, 2017
5. 6.	Trials of device characterization protocols (for each device class) Manufacturers review of characterization protocol & test results		April 1, 2018
7.	Proof-of-concept testing validates extrapolation procedure		October 1, 2018
8.	Stakeholder group consensus that <i>Recommended</i> <i>Practice</i> is useful & accurate		April 1, 2019

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – Accomplishments General Framework and Approach

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – Accomplishments Define Generic Devices: Power Flows & Services

Power injected into grid (P_{Grid})

Power for Grid Service:

 $P_{Service}(t) = P_{Grid}(t) - P_{GridBase}(t) ; \text{ where } Base \text{ indicates base case}$ $P_{Service}(t) = \Delta P_{Discharge}(t) + \Delta P_{Output}(t) - \Delta P_{Enduse}(t) - \Delta P_{Parasitic}$; where Δ is the difference between the service case & base case

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – **Response to Dec. 2016 Program Review**

Recommendation	Response	
This project needs a	Organized series of webinars & briefings to raise awareness	
lot more support from	leading up to 2 nd Industry Workshop:	
industry. The meeting	 GridWise Alliance pre-workshop webinar (n = 35*) 	
in March 2017 is	 Commercial lighting webinar (n = 27*) 	
critical.	 PV/batteries/inverters webinar (n= 321*) 	
	 HVAC & appliances webinar (n=21*) 	
	 Thermal energy storage briefings (n = 2*) 	
	 Electric vehicle industry meeting presentation (n = 13*) 	
	 More webinars to come in April (fuel cells/electrolyzers) 	
	Partnered with the GridWise Alliance to host 2nd Industry	
	workshop with sponsors GE & Intel @ GE's GridIQ Center in	
	Atlanta GA March 21-22, 2017 (n = 36*)	
	* Count excludes DOE and national laboratory participants	

✓ Project has raised industry awareness of the project dramatically in Q1&2 FY17

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – **Project Integration and Collaboration**

Relationship to Other GMLC Projects

ENERGY

Defining grid services, & metrics for grid 1.4.27 \checkmark 1.2.4 Grid Services **GM61 Virtual Battery-**Valuation services are value based (1.2.4 & 1.4.27) and Technologies based characterization Methods for Valuation Framework ✓ Use virtual battery concept as common and Control of Flexible Emerging **Development Building Loads Using** device model interface to each grid **Technologies** VOLTTRON service (GM61) **GM85** Systems **Research Supporting** ✓ Device models & grid service Standards and 1.3.5 DER Siting and performance models useful for long-term **Optimization Tool to** Interoperability planning (1.3.5, 1.4.25 & 1.4.26) 1.4.2 Definitions, **Enable Large Scale** (VTO) **Deployment of DER in Standards and Test** Interoperability & Interconnection (1.2.2 \checkmark California **Procedures** & 1.4.1) **GM86** Modeling for Grid Services ✓ Test procedures, data, & device models and Control 1.4.25 Distribution from Devices Software to delivered to GMLC Testing Network's System Decision Support V2G Support test procedure repository library (1.2.3) Integration (VTO) **Development &** ✓ Leverage testing & interoperability for **Applications** 1.2.2 electric vehicles (GM85 & GM86) **Interoperability &** 1.2.3 1.4.26 Development 1.4.1 Standards and Engagements **Establishment** and Deployment of **Test Procedures for** 1st Industry Workshop – 9-12-17, NREL of Testing **Multi-scale Production** Interconnection and Network 2nd Industry Workshop – 3-21/22-17, Atlanta **Cost Models** Interoperability 4 device-class & services webinars – Mar '17

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – Next Steps and Future Plans

This project is about

Enhancing Empowering Unlocking Unleashing

the value of grid modernization devices everywhere!

Oct-'17: Draft *Recommended Practice*, vetted by utility & device industries

Apr-'18: Test rigs & trials of characterization protocol, each device class

Apr-'19: Proof-of-concept testing of measured device performance against actual grid services

<u>Impact:</u>

- Std. performance, value & impact metrics for devices providing grid services
- Reward innovation, sell more devices
- ✓ Better decision-making by consumers, utilities, 3rd parties
- ✓ Lower cost, more reliable, cleaner grid

Expansion Potential:

- Battery equivalent interface as a modeling standard
- Allows detailed, state-ofthe-art device models to plug & play into planning and operation tools

Backup Slides

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – Data Flow between Device Model and Grid Service: the Battery Equivalent Model

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) –

Design Principles & Functional Objectives

- Test protocol simplicity
 - Short duration, low cost
 - Leverage/complement existing standards
- ► Test once, rate many
 - Extrapolate test results to grid service via device model
 - Allow new services to be defined, rated
- Device performance as member of a fleet
 - Individual devices may not have fidelity required for a service
- Uniformity across device classes & grid services
 Common dispatch & performance metrics agnostic to device type
 Normalize performance to device nameplate capacity

Support customized assumptions to reflect a region
 Weather, balance of plant, baseline usage assumptions
 Grid service "drive-cycle" patterns & values & value streams

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) –

1. Electrical Characterization Test for an Air Conditione (Example)

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – 2. Load-Curtailment Characterization Test for an Air Conditioner (Example)

Purpose of test: Characterize curtailment capabilities: e.g., amount of power curtailed, time lag, effect on energy consumption, etc.

Metrics

- Absolute load reduction
- % load reduction
- Time lag from request to curtailment

Metrics

- 92% recovery energy
- 5°F temp. rise limit
- 5-hr mode time limit (not shown)

Definitions, Standards and Test Procedures for Grid Services from Devices (GMLC 1.4.2) – 3. Load-Following Characterization Test for an Air Conditioner (Example)

Purpose of test: Characterize load following capabilities,

i.e., ability to follow load-up/load-down signals at increasingly short

intervals (for ancillary services, renewables integration, etc.)

Example Metrics

- 104% recovery energy (not shown)
- 100% load following, down 2-minute intervals
- Time lag (2-min)

