

Report Completion Date:

Section 1: Project Information

Project Information	
Control #:	1.4.23
Title:	
Project Title:	Threat Detection and Response with Data
	Analytics
Project PI Name and Lab Affiliation:	Jovana Helms, LLNL
Project Co-PI (plus-one) and Lab Affiliation:	Sean Peisert, LBNL
DOE Project Manager(s):	Carol Hawk
Period of Performance:	
Date Closed:	June 2019

Section 2: Project Assessment and Checklist

Project Assessment and Checklist	Y/N	Confirmation	Comments
Have all quarterly reports been submitted?	V	Date	
Trave all quarterly reports been sublimited:	1		
Have all milestones have been delivered?	Y		
Are all products finalized (e.g. technical	Y		
reports, journal articles)?			
Have all project products been finalized and	Y		
presented/submitted to DOE Project			
Manager(s) and/or GMI Leadership?			
Have all potential sensitivities been identified	Y		
and addressed with DOE Project Managers			
and/or GMI Leadership?			
Has the project team received feedback from	Y		
Project Stakeholders (e.g. advisory group)?			
Are there any open or pending costs?	Ν		

Section 3: Outcomes, Deliverables, Publications

Provide the following:

*In addition to titles, provide links to any websites or other repositories where deliverables and/or other information will be available after the project has been completed *Publications available for public release, URLs, etc. listed here should be uploaded to GMLC Open Point

1. List of Outcomes:

This project was the first effort looking at various data sources on the distribution side that could potentially be used for identifying and detecting cyber attacks. It set foundation for understanding how the distribution systems can be impacted by cyber attacks, what data can be used to detect them and what are potential mitigation options.

2. List of Deliverables:

Report Completion Date:

- Physical models of power inverters that will support analytics to differentiate cyber from non-cyber events
- Brief report describing experimental setup, as well as early models, analytics, and results, including models
- Analytics implemented as network IDS detection algorithms using the Berkeley Streaming Data Framework (power data + Bro IDS detection algorithms, as necessary)
- Final experimental results
- Report describing final models, analytics, and results
- Brief report describing selected NESCOR scenario
- Brief report describing integration of SEL-3622 into selected NESCOR scenario
- Identify specific feature sets relevant to detecting physical and cyber threats
- Report describing experimental results and potential future enhancements
- Simulator requirements to identify attacks on building to grid
- Report on building to grid testbed model
- Report describing results from building to grid testbed
- Proof of concept for cyber-physical signature generation
- Acquisition of smart meter data and hardware
- Data agreement with Pecan Street
- Brief report describing selected set of AMI/smart grid hardware for use in the project
- Cyber scenarios using AMI data
- Report describing implementation of analytics for detection of anomalous behavior in smart meter data and experiment results,

3. List of Publications:

- James Obert, Adrian Chavez, Jay Johnson, "Distributed Renewable Energy Resource Trust Metrics and Secure Routing", Computers & Security Journal 88 101620, Elsevier, 2019.
- James Obert, Adrian Chavez, "Graph-based Event Classification in Grid Security Gateways", IEEE Artificial Intelligence for Industries Conference, 2019.
- James Obert, Adrian Chavez, Jay Johnson, "Behavioral Based Trust Metrics and the Smart Grid", The 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 2018.
- Daniel Arnold, Shammya Saha, Ciaran Roberts, Anna Scaglione, Nathan G. Johnson, and Sean Peisert, "Adaptive Control of Smart Inverters for Distribution Grid Cybersecurity", submitted to IEEE Transactions on Power Systems
- Sridhar S., A. Ashok, M.E. Mylrea, S. Pal, M.J. Rice, and S.G. Gourisetti. 2017. "A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development." In Resilience Week (RWS 2017), September 18-22, 2017, Wilmington, Deleware, 12-17. Piscataway, New Jersey:IEEE. PNNL-SA-126405. doi:10.1109/RWEEK.2017.8088641

Report Completion Date:

- Pal S., S. Biswas, S. Sridhar, A. Ashok, J. Hansen, and V.C. Amatya. 2018.
 "Understanding Impacts of Data Integrity Attacks on Transactive Control Systems." In IEEE ISGT NA 2020. PNNL-SA-138041
- Nur N., S. Sridhar, S. Pal, A. Ashok, and V.C. Amatya. 2019. "A Clustering Approach for Consumer Baselining and Anomaly Detection in Transactive Control." In International Workshop on Applied Machine Learning for Intelligent Energy Systems (AMLIES). PNNL-SA-139353.
- Chellappan, K., Rivera-Soto, R. "Framework for Unsupervised Anomaly Detection on Smart Meter Data", submitted for publication
- 4. List of Awards or Recognition: N/A
- 5. List any ROIs Software, Intellectual Property, Licensing, Patents, Etc. LBNL in process of submitting a software disclosure

Section 4: Final Costing

Each Lab Financial POC Completes Final Costing of GMLC Projects for their lab. PIs, Lab Leads will need to assist but not required to report financials with this final report.

Final Thoughts	Comments
Lessons Learned	Distribution grid has a large attack surface
	and is very rich in potential data sources that
	can be used to detect cyber attacks. This
	project scratched the surface on investigating
	this problem.
	While each lab looking at a separate data
	source was by design, in a complex system
	like this a more wholistic approach, looking at
	the system level changes would be warranted.
	Additionally, from the project management
	perspective, integrating 4 parallel
	workstreams has been a bit of a challenge.
Opportunities for Improvement	Ability to distinguish cyber from non-cyber
	events in the grid is still a challenge. Looking
	at the distribution system as a whole and
	detecting undesired behaviors is rather than
	focusing on individual data streams would be
	a potential path forward.

Section 5: Final Thoughts/Comments

Report Completion Date:

Future Projects:	Leverage deep reinforcement learning to
Ideas for future work?	model the communications and powerflow of
Possible next steps and research direction?	the system and teach the algorithms what the
ľ	"healthy" system behavior is.
Other:	